

Speed up your cycle time

RECYCLING & DEMOLITION

- Speed Valves Type REG-2D und REG-2F
- Speed One The new Generation of Speed •
- Valve technology •
- **Booster**
- Accessories

Our products are used worldwide in machines and systems that are used to work on the resourcesaving future of people. The way we live, our mobility and our energy production will change. With the development and production of valve technology for the demolition and recycling industry through to safety valves for construction machinery and cranes, we want to be part of this change! The machines equipped with our valves should be as safe and effective and thus energy-saving as possible!

we engineer your progress for a sustainable tomorrow

Inhaltsverzeichnis

1. Demolition Technology	
1.1 Demolition Shears	
1.2 Types of Cylinder Technology	
2. Basics - Regeneration Valve Technology	02
2.1 Differential Cylinder	
2.2 Structure and use of a Regeneration Circuit (differential circuit)	
3. Valve Technology Regeration Circuit	
3.1 Spool Valve Technology	
3.2 Cartridge Technology (Screw-in)	
3.3 Two-Way Cartridge Technology (Slip-in)	
4. SpeedOne	
Product Description, Hydraulic Schematic, Connection, Character	
Technical Data, Mounting Space, Type Code	
5. REG-2F Regeneration Valve, Double Cylinder	07
Product Description, Hydraulic Schematic, Characteristic	
Technical Data, Mounting Space, Type Code	
Selection example	
6 Booster Technology, Operation	10
Design, Hydraulic Schematic	
6.1 Booster Technology additional Power for Breakers	
Advantages, Prinziple Design	
7. Typ V1	10
Product Description, Hydraulic Schematic, Characteristics , Tech	nnical Data
	10
8. Accessory	
8.1 FC1X-2P + FC1-1D - More Power at the Shear	
8.2 Flow Control Valve FC1X-2P	
8.3 Priority Valve FC1-1D	
8.4 Return discharge Valve D33-NA	
8.5 Return discharge Valve D22-1N	
8.6 Manifold	

1. Demolition Technology

In demolition technology, the components are often exposed to extreme loads. Just then it is important to use robust and reliable products. The cycle times and the breaking force of the attachment are of particular importance for the optimal demolition technology.

1.1 Demolition Shears

These attachments are required to e.g. cut steel, break concrete and pulverize it. A high breaking power is required from these attachments. In order to achieve this, the use of cylinders with a large diameter is necessary. However, they also take up a large volume when closing, which leads to corresponding closing times. For this reason, regeneration valves or pressure intensifiers from the field of booster technology are required, which increase the productivity of the shears.

1.2 Types of Cylinder Technology

Demolition and scrap shear manufacturers typically use two types of cylinder techniques. A distinction can be made here between the 1-cylinder and the 2-cylinder technologies. With the 1-cylinder technology, the shears are operated via a differential cylinder. With the 2-cylinder technology, the shears are operated with two differential cylinders.

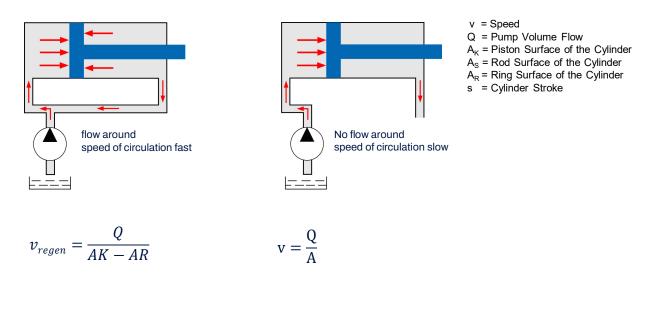
1-cylinder technology

2-cylinder technology

2. Basics - Regeneration Valve Technology

2.1 Differential Cylinder

Demolition shears are typically operated with differential cylinders. These have a piston rod on one side of the piston. This results in two different effective surfaces: the piston and rod side.


The surface on the piston side works completely and on the rod side only the ring surface works.

For this reason, a differential cylinder normally extends and retracts at two different speeds. The retraction speed is higher, but develops less force due to the smaller effective area. The speed when extending is slower, but develops more force due to the larger effective area.

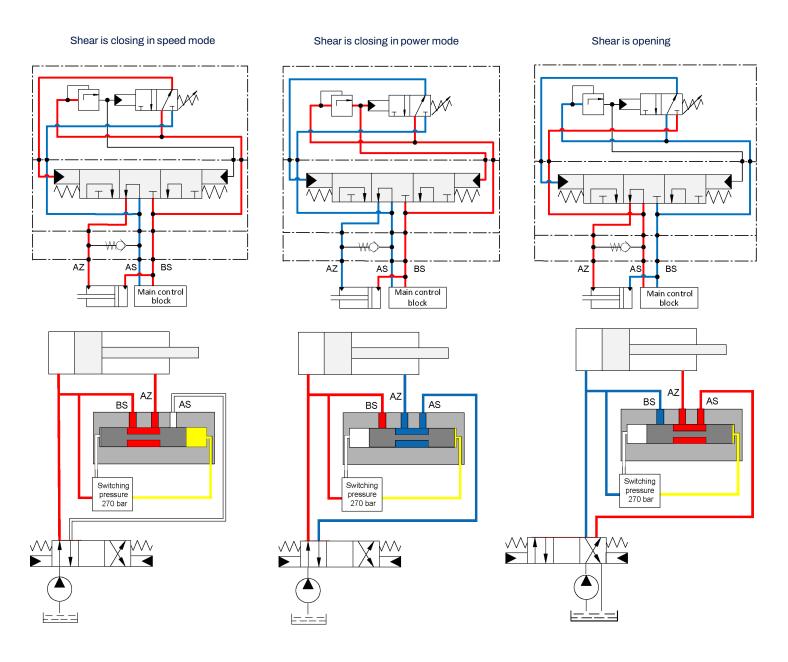
2.2 Structure and use of a Regeneration Circuit (differential circuit)

With a regeneration circuit, a differential cylinder can be extended faster than retracted with the same pump volume flow. Regeneration controls are realized by connecting the bottom and rod sides of a cylinder. This can be achieved through valve technology.

Sample Calculation:

Q= 650 l/min; d_{k} = 350mm, d_{s} = 220mm, Surface Relation 1:1, 65, s=1.120mm

 $v = \frac{650 \text{dm}^3/\text{min}}{(9,62 \text{dm}^2 - 5,82 \text{dm}^2)} = 171,05 \text{ dm/min} = 285,08 \text{mm/s} \qquad v = \frac{650 \text{dm}^3/\text{min}}{9,62 \text{dm}^2} = 67,65 \text{ dm/min} = 112,75 \text{mm/s}$ $t_{\text{regen}} = \frac{1.120 \text{mm}}{285,08 \text{mm/s}} = 3,93 \text{s} \qquad t_{\text{without regen}} = \frac{1.120 \text{mm}}{112,75 \text{mm/s}} = 9,93 \text{s}$

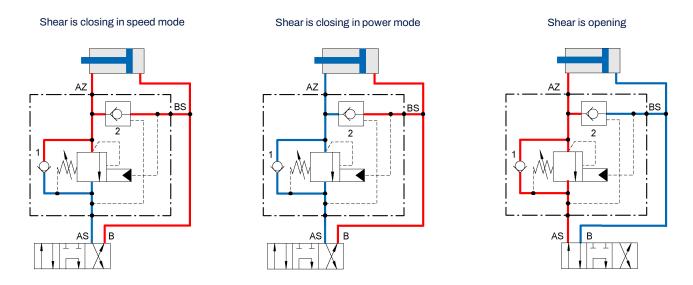

3. Valve Technology Regeration Circuit

There are basically three types of technologies in regeneration valve technology: Spool, cartridge (screw-in) and cartridge (slip-in) technologies.

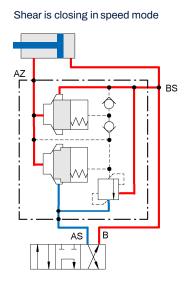
3.1 Spool Valve Technology

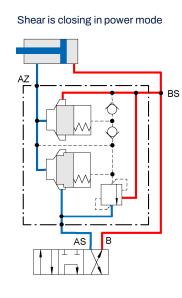
The spool valve design impresses with its robust construction and high reliability and can be used for any volume flow range.

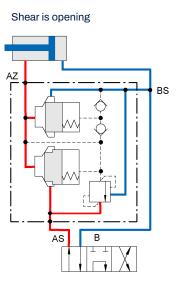
Regeneration valves for scrap and demolition shears connect the bottom and rod side of their cylinder by means of valve pistons in speed mode. As soon as the blades hit material, the pressure increases. At a certain pressure level, the valve spool switches to power mode by connecting the rod side to the return line. Due to the overlapping of the valve spool, the valves have a slightly longer response time to switch into speed mode. In addition, the switching behavior depends on the return pressure. The big advantage of this valve technology, however, is the high switching level, e.g. at 270 bar, which shortens the work cycles and thus increases productivity. The shear works in speed mode for as long as possible and only switch to power mode when a high cutting force is required. By that cutting in speed mode is possible when the required force is low.



3.2 Cartridge Technology (Screw-in)

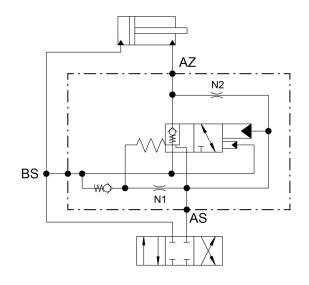

 Unbeatable in smaller volume flow ranges. Fast response behavior and independent of high return pressures.


The basic circuit includes a lowering brake valve and a check valve. When extending the cylinder (closing the shear) without load, the oil is routed via the check valve (2) from the rod side (AZ) to the bottom side (BS). When the pressure on the bottom side increases, the lowering brake valve opens and the oil from the rod side is routed to the tank (AS). The pump pressure thus develops the maximum force on the piston surface. The cylinder retracts (open the shear) via the check valve (1). The switching level into power mode depends on the opening ratio of the lowering brake valve cartridge. If the lowering brake valve with an opening ratio of 1:3 is set to 420 bar, for example, the valve switches into power mode at approx. 140 bar. If a pressure of only 150 bar is required for cutting, additional pressure remains caged on the rod side. That means that the inlet pressure is not only used for cutting, but also has to work against the caged pressure on the rod side. Cutting in speed mode is not possible with this design. In addition, small components which are used in the valve might get into the hydraulic system in the event of a fault.



3.3 Two-Way Cartridge Technology (Slip-in)

 Compact design for large volume flows. Good response behavior and independent of the high return pressure.



4. SpeedOne

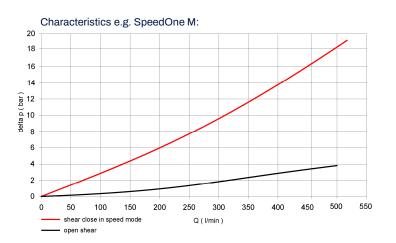
- Very compact design
- Direct switching from rapid traverse mode to force mode
- Combination of slider/cartridge technology
- Faster cycle times due to optimized flow values
- Direct mounting onto the cylinder

Hydraulic Schematic

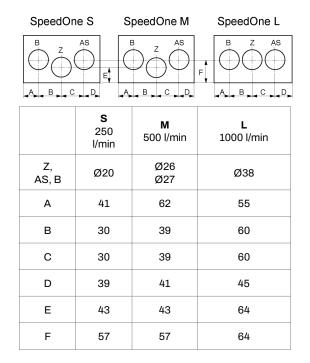
NEW GENERATION

Product Description

The regeneration function is implemented by a check valve (cartridge technology) integrated in the valve spool (AZ to BS).


The main piston does not move in this mode.

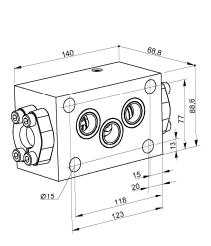
The main piston is deflected based on the pressure via a small pilot piston.

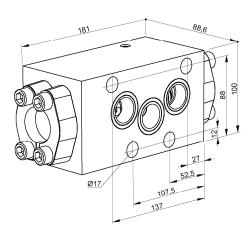

As soon as the activation pressure for the power mode is reached, the main piston moves out of its overlap and releases the oil from the rod side in direction to the main control block to the tank (AZ to AS).

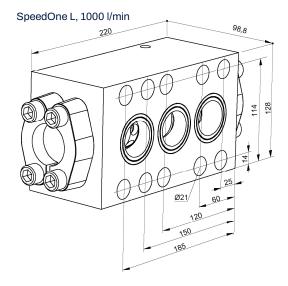
When the pressure drops, the main piston closes and the speed mode takes effect.

Fast opening behavior with a relatively weak spring and maximum stroke with low pressure loss ensures optimal closing / retraction of the cylinder.

Connection Ports


Technical Data

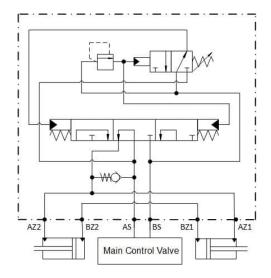

Mounting position	any
Weight	SpeedOne S = $5,1kg$ / SpeedOne M = $9,5 kg$ / SpeedOne L = $14,2 kg$
Maximum Inlet Pressure	420bar
Adjustable switching level speed mode -> power mode	250bar bis 300bar, factory setting 270bar
Maximum Inlet Volume Flow	SpeedOne S, 250 l/min; SpeedOne M, 500 l/min; SpeedOne L,1000 l/min


Mounting Space

SpeedOne S, 250 I/min

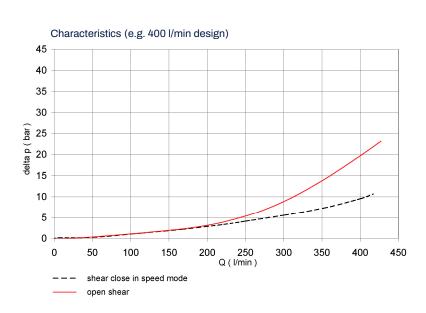
SpeedOne M, 500 l/min

Type Code


Speed One	- [ХХХ	-	ХХХ
Product Group Design		Inlet Volume Flow:		Switching Level:
		0250 l/min S		Standard 270 bar
		0500 l/min M		L
		1000 l/min L		

5. REG-2F Regeneration Valve, Double Cylinder

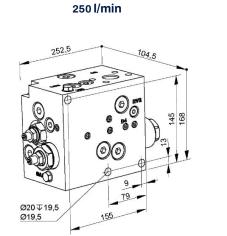
- Ideal for double cylinder applications
- Automatic switching between rapid traverse mode and force mode
- Compact design
- Robust slider technology



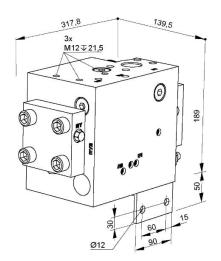
Hydraulic Schematic

Product Description

This value is suitable for operating double cylinder shears. The function of this value is identical to the REG-2D. The pilot control is built into the housing. The value consists of a compact housing with the necessary value technology integrated. It can be flanged on a base plate between the two cylinders.



Technical Data


Mounting Position	any
Weight	250 l/min=16,6kg; 400 l/min=25,1kg; 700 l/min=35,3kg
Maximum Inlet Pressure	350 bar
Adjustable switching level speed mode -> power mode	250bar bis 300bar, Factory Setting 270bar
Switching level power mode -> speed mode	If the inlet pressure decreases to approx. 15% of the switchover pressure.
Maximum Inlet Volume Flow	Depending on Valve Design 250 l/min; 400 l/min; 700 l/min
Flange ports	
AS, BS	250 l/min SAE 1"; 400 l/min SAE 1"; 700 l/min SAE 1 ¼"
AZ1, AZ2	250 l/min SAE 3/4"; 400 l/min SAE 1"; 700 l/min SAE 1"
BZ1, BZ2	250 l/min SAE 3/4"; 400 l/min SAE 1"; 700 l/min SAE 1 ¼"

Mounting Space

400 l/min

700 l/min

assembly example

Type Code

Product Group Design

Selection example

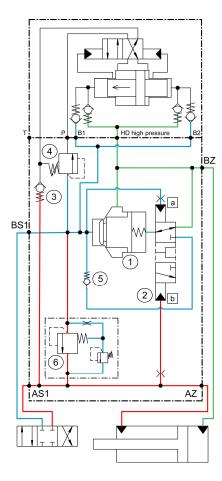
Regeneration Valve	Q max Inlet	Attachment Weight (kg)	Excavator Weight (t)
REG-2F	250 l/min	250 - 2000	10 - 25
Speed One S	250 l/min	250 - 2500	10 - 30
REG-2F	400 l/min	2000 - 5000	25 - 65
Speed One M	500 l/min	2000 - 6500	30 - 85
REG-2F	700 l/min	6500 - 9000	70 - 105
Speed One L	1000 l/min	6500 - 18000	90 - 200

This information is based on experience with our customers and serves as a guide. We would be happy to help you choose the right valve for optimal use.

6. Booster Technology - Operation

Design

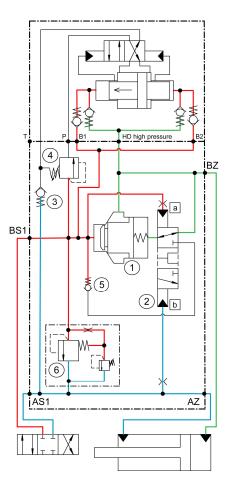
The base block contains a cartridge valve (1) which, in combination with the directional valve (2), controls the direction of the cylinder.


The pressure relief valve (6) limits the maximum pressure to the cylinder.

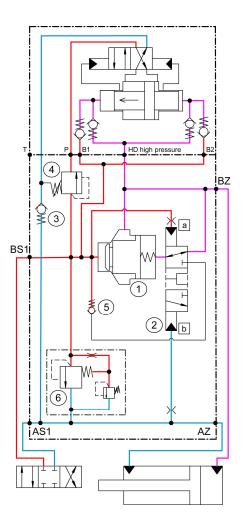
The switch-on point of the high pressure stage can be determined via the pressure sequence valve (4).

Additional check valves (3 + 5) complete the signal routing and ensure the function of the valve. The high pressure stage as well as the switch to increase the pressure in the cylinder is flanged onto the base block

Function: Opening the Shear


The pump volume flow is fed through the valve directly into the rod side of the cylinder via connection AS1. The oil from the bottom is returned to the tank through the cartridge valve via connection BS1.

Function: Closing the Shear


The supply takes place via the connection BS1. The oil flows through the cartridge valve into the bottom of the cylinder.

The pressure is applied to the pressure sequence valve.

Function: Booster Mode

If the pressure exceeds the set value of the pressure sequence valve, the signal is passed on to the high pressure stage and activates the booster mode.

6.1 Booster Technology additional Power for Breakers

Boosters are an innovation in the field of demolition technology. They offer a new way of working. The special about WESSEL Booster is the double-acting operation of the high pressure stage.

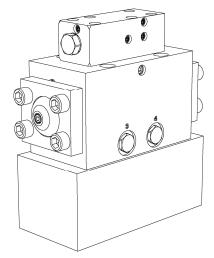
Faster cycle times can be achieved because the cylinder can be dimensioned smaller with the same force.

Advantages:

- Lower costs
- Smaller volume flows in booster mode
- Less pressure loss in the rotary couplings / quick coupler
- Energy saving

The high pressure stage is activated via an additional valve. The switch-off function of the high pressure stage takes place automatically when it is no longer required.

Heigh Pressure Stages:

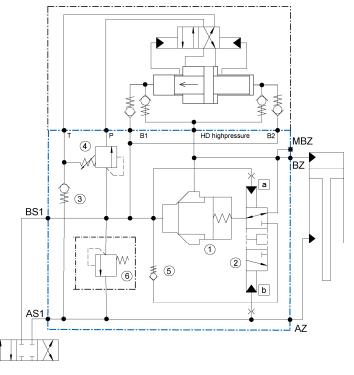

- V1: Pmax=700bar, Qin=120-200l/min | Qout= 30l/min
- V2: Pmax=700bar, Qin=200-300l/min | Qout= 60l/min

Prinziple Design

Individual base block with flanged high pressure stage. The basic block is customized.

Customer-specific requirements can be:

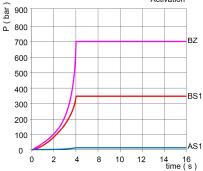
- Volume flow
- Max. Cylinder pressure
- Flange pattern
- Installation space dimensions
- Connection sizes



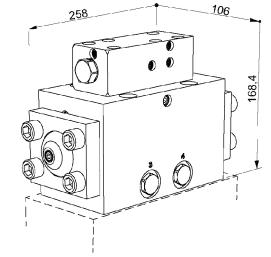
7. Typ V1

- Pmax = 700 bar
- Directly mounted onto the Cylinder

Hydraulic Schematic



Product Description

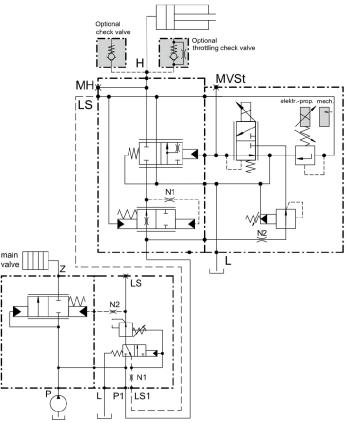

The base block (colored blue) is customized to the requirements and has a cartridge valve (1) which, together with the directional valve (2), controls the movement of the cylinder.

The pressure valve (6) limits the maximum pressure of the cylinder. The booster mode is activated via the sequence valve (4). Additional check valves (3 + 5) ensure the correct function of the booster valve. The high pressure stage with switching valve is mounted on the base block.

Characteristics

Booster Mode (nim/ 160 140 ŏ BS1 120 110 100 80 60 40 ΒZ 20 0 12 0 2 8 10 14 16 time (s) 4

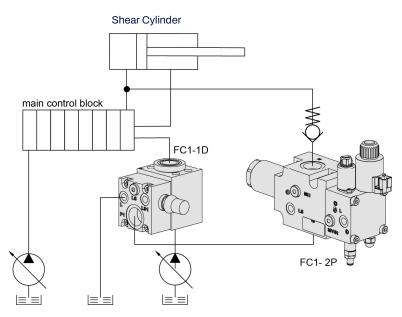
Technical Data


23,5 kg
350 bar
700 bar
120 l/min
260 bar
350 bar

BS1. BZ	Supply Line	SAE 1 1/4" (M14)
DOI, DL	cappij Line	ISO 6162-2P32M / SAEJ 518-1 CD62
AC AC1	Quanhalina	SAE 1"
AS, AS1 Supply Line	ISO 6162-2P32M / SAEJ 518-1 CD62	
MBZ	Gauge Port	9/16-18 UNF-2B ISO 11926-1
	_	

8.1 FC1X-2P + FC1-1D More Power at the Shear

Hydraulic Schematic

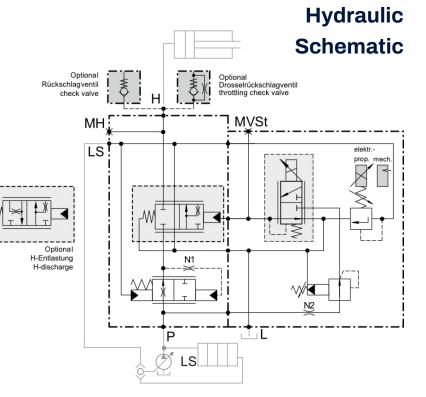


Application Example

If more power is required on the shear, this can be done by simply installing the two valves FC1-1D and

FC1-X2P. The priority valve FC1-1D is flanged directly onto the pump, providing a preferential flow rate. By combining it with the flow control valve FC1-X2P, on which the volume flow and pressure can be proportionally adjusted, a precisely defined volume flow is brought to the shear cylinder. This increases the performance or productivity even further. This volume flow can e.g. be branched off by a second pump.

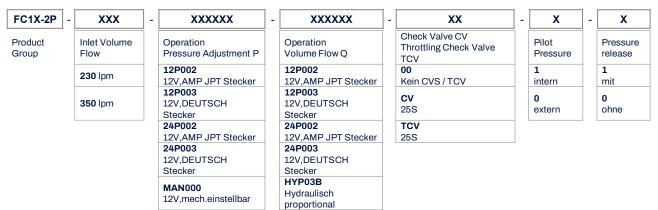
Schematic description connection options may vary depending on the hydraulic system


Description and ordering information for the valves FC1X-2P and FC1-1D can be found on the following pages.

8.2 Flow Control Valve FC1X-2P

- High Precision of the Volume Flow
- For changing attachment with different requirements to volume flow and pressure

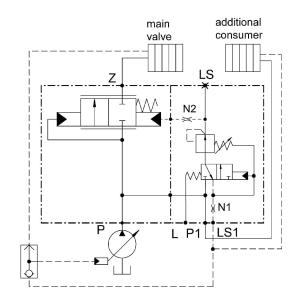
Product Description


With the flow control valve FC1X-2P, a defined volume flow and output pressure can be set electrically proportional for a single-acting consumer.

Technical Data

Weight	14,2 kg
Maximum Inlet Pressure	420 bar
Adjustable Pressure of the Consumer	120 – 420 bar
Accuracy of the outlet Volume Flow	±8%
Maximum recomended Tank pressure (L)	< 1 bar
Maximum Pilot Pressure VST (only with Option "VSt extern")	< 50 bar
Maximum outlet volume flow (P)	230 l/min-350 l/min
Minimum outlet volume flow (P)	30

Port P, Supply Line	G1" (ISO 1179-1)
Port H, Supply Line	G1" (ISO 1179-1)
Port VSt, Vorsteueranschluss	G ¼" (ISO 1179-1)
Port L, Drain	G ¼" (ISO 1179-1)
Port MH, MVSt, Gauge	G ¼" (ISO 1179-1)
Port LS, Load Sensing	G ¼" (ISO 1179-1)
	DIN 43650: bis IP65
Protection Class according DIN 40050:	AMP - JT: bis IP67
	Deutsch DT04-2P: to IP69


Type Code

8.3 Priority Valve FC1-1D

Hydraulic Schematic

Product Description

The priority valve is used to supply an additional consumer with a preferred volume flow. The remaining volume flow is provided to supply the existing main functions on the machine. The divided volume flow to the additional consumer has priority over the main functions. The valve is flanged directly onto the pump or onto the pump inlet of the main control. The valve is usually combined with other valves such as the flow control valve FC1X-2P.

Technical Data

Weight	4,6 kg
Maximum Inlet Pressure	420 bar mit SAE screw connection
Inlet Volume Flow	300 l/min (SAE ¾"), 400 l/min (SAE 1"), 600 l/min (SAE 1¼")
Port Sizes	
Port P, Z	Code 62, ISO 6162
Port P1	G 1", ISO 1179
Port LS, LS1, MP	G ¼, ISO 1179

Type Code

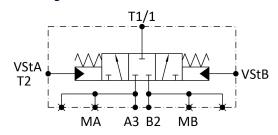
Product Group Design

FC1-1D

-	XXX	
	Ports:	
	05C – SAE ³ / ₄ "	

05E – SAE 1" **05G** – SAE 1 ¹/₄"

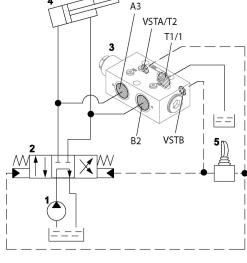
XXX
Inlet Volume Flow:
300 lpm (SAE ¾")
400 lpm (SAE 1")
600 lpm (SAE 1 ¼")



8.4 Return discharge Valve D33-NA

Lowering Return Pressure -> Increase Performance

Hydraulic Schematic


Product Description

The 3/3 directional valve is hydraulically piloted and opens port A3 or port A2 to the tank.

Application Example

The ratio of the shear cylinder results in volume flows out of the bottom side which is double the maximum inlet volume flow. This can result in high return pressures if the main control block and / or the return line of the excavator are not designed for this flow. With an additional direct relief to the tank by means of a 3/3 directional valve, the high return pressure and thus the loss can be significantly minimized.

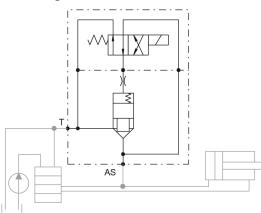
The valve works as a bypass valve to the main control block. The bottom and rod sides of the cylinder are relieved towards the tank.

4 Shear Cylinder 5 Piloting Device

Technical Data

Weight	D33-NA-03G-400LPM	9,5kg
	D33-NA-05K-550LPM	14,8 kg
Maximum inlet pressure		420 bar
Recommended piloting pressure		>10 bar, <50 bar

Type Cde


Connection Ports				
G1 ¼"	A3, B2, T1/1= G1 ¼, ISO1179-1 VStA/T2, VStB, MA, MB = G1/4 ISO 1179-1			
SAE 1 ½"	A3, B2, T1/1= SAE 1 ½" ISO6162 VStA/T2, VStB, MA, MB = G1/4 ISO 1179-1			

8.5 Return discharge Valve D22-1N

Flangeable directly onto the Cylinder

Hydraulic Schematic



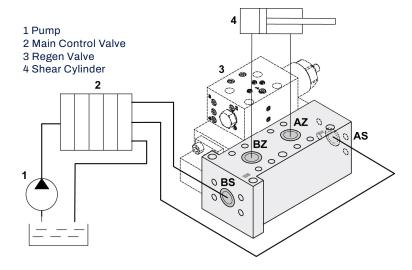
Product Description

The 2/2 directional valve is used to connect or disconnect a hydraulic line (similar to a ball valve). It is a pilot operated valve that is designed for high pressure and high volume flow and is therefore particularly suitable for mobile applications.

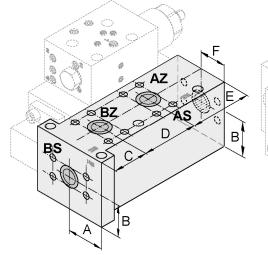
Application Example

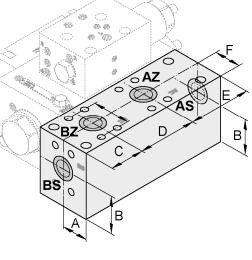
The 2/2 directional valve also serves as a return relief valve, with the difference that the valve only releases the bottom side, because the cylinder's ratio (volume flow ratio) can lead to high return pressures here.

8.6 Manifold

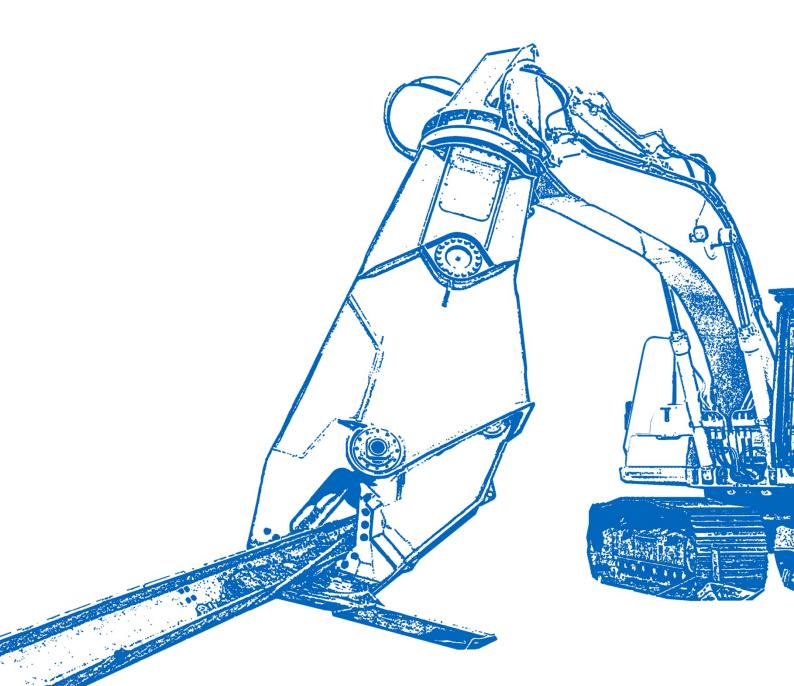

Product Description

The regeneration value is usually flanged directly onto the cylinder (3 connections). For applications with an unsuitable cylinder flange, the regen value is optionally available with a connection plate (4 connections). The connection plate is available for the 250 I / min, 400 I / min and 800 I / min variant.


Connecting Example


AS - Port: Opening the Shear BS - Port: Closing the Shear Regen and

- Power Mode
- BZ Port: Cylinder Bore Side
- AZ Port: Cylinder Rod Side


Connection Ports

	996 250 lpm	997 400 lpm
AS, AZ, BS, BZ	SAE 1"	SAE 1"
А	55	40
В	48	57
С	52	52
D	83	88
E	91	95
F	40	40
G	Ø 25	Ø 25

WESSEL-HYDRAULIK GmbH Liebigstraße 8 26389 Wilhelmshaven Germany Telefon +49 4421-9911 0 Telefax +49 4421-9911 29

info@wessel-hydraulik.de www.wessel-hydraulik.de